[TF23019 - Parallel and Distributed Programming

Final Project

Submission deadline

Friday 8 May 2020, 10:00 at Canvas.

Instruction

The report of this final project must be submitted as a single PDF file. You can choose
between scanning handwritten notes or typing the solutions directly on a computer. Scanned
pages must be clearly legible. The PDF file must contain your name, course name, assignment
number, page number on EVERY page.

The source code of the project must be submitted along with the PDF report. All of the
files must be put into one folder and compressed into one ZIP file.

Students do not require to make an oral presentation for the project. However, you have
to demonstrate that your program can run properly. The demonstration may take about 15
to 20 minutes. Questions may be asked during the demonstration.

Final Project Description

In this project, the students are asked to develop a MiniChat application. Students are free
to choose your preferred programming languages to implement your application as long as
the language supports the concepts about parallel, concurrent and distributed programming
discussed in class. The MiniChat to be developed in this project is a GUI software that
enables users to exchange text messages with each other. You can refer to Yahoo Messenger,
Skype or Facebook Messenger as examples of a text messenger. Also, you can have a look
at this tutorial [to understand the features of Yahoo Messenger.

The main focus of this project is only sending text messages. You are free to choose either
Peer-To-Peer or Client-Server communication model for the protocol of your MiniChat. In
Peer-To-Peer model, each user can act as a client or a server when exchanging messages
with each other. In the Client-Server model, there will be a central server that receives
messages from all senders and distributes them to the corresponding receivers. In either
communication model, there must be one central server, called MiniChatServer, to handle
user credentials (i.e, username, password, status, avatar, etc.) as well as other functions
related to the clients (i.e., user login, user creation, get the list of added users, etc.). A

thttps://www.youtube.com/watch?v=qXRzBPtXul8

MiniChatClient which is used by the users to log in to the server and retrieve information
about their accounts. This is similar to the usage of Skype or Yahoo Messenger where the
users have to sign in to the server, get a list of their added friends and send messages to
their chosen friends.

1. GUI Design - 10%

Figure 3] illustrates a basic GUI for the MiniChatClient, based on the GUI of Yahoo Mes-
senger. You are free to have your own design of the GUI as well as add more features to
the application. When implementing the underlying functionalities of a GUI application,
please take into account the application of multi-threading programming in order to reduce
the response time of the GUI. Using only one main thread in the implementation may freeze
the GUI while the thread is executing underlying functions.

2. MiniChatServer - 20%

The MiniChatServer, as described above, manages information of its users. MiniChatServer
needs not to have graphical user interfaces. Figure [1| presents the basic data structure for
the MiniChat application. You could add more classes or attributes necessary to your im-
plementation. Figure [2|illustrates the communication between a user using MiniChatClient
and the MiniChatServer. The MiniChatServer has to be implemented as a REST server with
APIs presented in Table [1}

Table 1: REST API of MiniChatServer

Function URL subpath Method Input Output
Login and update | /user/login/ POST | Username, Pass- | OK/BAD RE-
online status word, Online sta- | QUEST
tus

Logout and set | /user/logout POST | Username OK/BAD RE-

online status to QUEST

offline

Create a new user | /user/create/ POST | Username, Pass- | OK/BAD RE-
word QUEST

Get user informa- | /user/{username}/ GET - user information

tion

Add new friend Juser/{username} /| PUT list of usernames | OK/BAD RE-
to be added QUEST

You are free to update or add more functions into Table [1] in accordance with your
implementation. Please use JSON as the format for the Input/Output content of these
functions.

User Server

-username: String -address:String
-password:String
-status:String <<Enumeration>>

-avatar:String
-onlineStatus: OnlineStatus
-address: String
-addedFriends: List<User>

OnlineStatus

Online
Offline

Figure 1: MiniChat Data Structure

Userl Server
| |
| login(user1, userl_password) |
| oK g
K mmmmmm e S e
| |
: update_online_status(userl, Online) »:
| OK |
K= —— == — -~ —— = —— s .
| |
| get_information(userl) |
[P
| userlinformation (username, status, onlineStatus, list of friends, etc.) |

___________________________ _'
| |
I dd r) I
| add_user(user2 |
| o g
e e =
| |
| |
| |
I logout(userl I
i gout() >
| |
,<______________0K_ ____________ 4

Figure 2: Communication between MiniChatClient and MiniChatServer

3. MiniChatClient - 20%

The MiniChatClient is the main GUI application that enables the users to login/logout into
the MiniChatServer, update their information, and send messages with other added friends.
An example of a graphical interface of the MiniChatClient is showed in Figure [3]

MiniChat Login MiniChat Main Window
~ Usemame
Avatar This is a status

| User name |

[Password | Friend List:
o Friend1

Create new user Friend2
@ Friend3
(.
(a) Login window (b) Main window

MiniChat Chat Window

Avatar

Userl: Hello
User2: What’s Up

8 (=)

(¢) Chat window

Figure 3: MiniChatClient example user interface

4

Regarding the communication model between the users, as mentioned above, you can
choose either Peer-To-Peer or Client-Server models for your MiniChat application. Figure
and |5 present the interaction of the users in both models.

Userl User2
(clitlent) (serlver)

connect(userl, user2_address)

Figure 4: Peer-To-Peer Communication Model

Userl Server User2
(cIi(Ient) (client)

|
connect(server_address) >:

Figure 5: Client-Server Communication Model

For the Peer-To-Peer model, one user would act as a server (TCP Socket server) and the
other would be the client. In this model, every MiniChatClient has to start a local server
in order for the other users to connect and exchange messages. The attribute address of
the User class in Figure [1|is meant for socket address of the user. If you do not employ this
model, there is no need to use this attribute.

For the Client-Server model, there will be another central server (different from the REST
MiniChatServer) which acts as an intermediate node that receives messages from all senders
and forwards the messages to the corresponding receivers.

4. Advance Features - 10%

You are free to add more advance features to your MiniChatClient application. Several
suggestions are updating avatar for the user, adding style and font for the message, emoji,
buzzing E], etc.

5. Report - 20%

The report should be from 10 - 30 pages. In the report please add any kind of diagrams,
models that describe the implementation of your application. A manual of how to set up
and run your application should also be added to the report.

6. Demonstration - 20%

For the demonstration, you do not need to make any formal presentation. Instead, you
just need to demonstrate the features of your application. Questions could be asked during
the demonstration just for clarification of the implementation. There will be no question
beyond the scope of your work. Please note that the demonstration is mandatory in order
to determine if you fulfill the requirements of the project.

Zhttps:/ /www.youtube.com/watch?v=WfcX2ise7ro

	GUI Design - 10%
	MiniChatServer - 20%
	MiniChatClient - 20%
	Advance Features - 10%
	Report - 20%
	Demonstration - 20%

